📖
Coding problems
  • Overview
  • Second time
  • Third time
  • 2 sum
    • 2 sum?
    • 2 Sum All Pair I
    • 2 Sum All Pair II
    • 3 Sum
  • Array
    • Smallest and Largest
    • Largest and second largest
    • Longest Palindromic Substring
  • BFS
    • Array Hopper IV
    • Deep copy graph(possible loops)
    • Kth Smallest With Only 3, 5, 7 As Factors
    • Word Ladder
  • Binary Search
    • Closest in Sorted Array
    • Smallest Element that is larger than target
    • Search in unknown size array
  • Bit Operations
    • Basic Operations
    • Power of two?
    • Different bits
    • Reverse all bits of a number
    • Unique String
  • Deque
    • Deque with 3 stacks
    • Largest Rectangle in histogram
  • DFS Permutations
    • All subsets I
    • All subsets size k
    • Combinations For Telephone Pad I
    • Subsets of all permuations
    • Generate N valid parentheses I
    • Generate N valid parentheses II
    • Generate N valid parentheses III
    • Combinations of Coin
    • All Permutation String
    • All Permutations II
    • Telephone Combinations
  • Dynamic Programming
    • Array Hopper I
    • Array Hopper II
    • Array Hopper III
    • Cut Rope
    • Dictionary Word 1
    • Dictionary Word II
    • Eat Pizza
    • Largest Cross of Ones
    • Largest Square Surrounded By One
    • Largest X of 1s
    • Largest Square of Matches
    • Largest Submatrix Sum
    • Longest Ascending Subsequence I & II
    • Longest Common Sequence between two strings
    • Most with positive slope
    • Palindrome Partition
    • Edit Distance
    • Square of ones
    • Wild card matching
    • Wood Cutting
    • 188. Best Time to Buy and Sell Stock IV
  • Graph Search
    • Kth closest to <0, 0, 0>
    • Largest Product of Length
  • HashTable
    • Top K frequent words
    • Bipartite
  • Heap
  • LinkedList
    • Reverse
    • Merge Sort Linked List
    • Re-Order LinkedList
  • Slow fast pointers
    • Remove duplicate elements in array
  • Problem Solving
    • Water Level I
    • Largest rectangle in histogram
    • Range Addition II
  • Recursion
    • ReverseTree
    • NQueen
    • NQueen optimized
    • Spiral Order Print I
    • Spiral Order Print II
    • String Abbreviation Matching
  • Sliding Window
    • Longest subarray contains only 1s
    • Longest Substring Without Repeating Characters
    • Maximum Number within Window
  • Sorts
    • QuickSort
  • String
    • All Anagrams
    • is substring of string
    • Reverse String
    • Reverse Words on sentence
    • Remove Chars from String in place
    • Right shift N characters
    • Remove Leading/duplicate/trailing spaces
    • Shuffle String
    • String Abbreviation Matching
  • Tree Traversal
    • Check balanced tree
    • Check if complete tree
    • Delete in binary tree
    • LCA of two tree nodes
    • Get Keys In Binary Search Tree In Given Range
    • Height of Tree
    • Symmetric Tree?
    • Tweaked Binary tree
    • Set left node count
    • Greatest difference Left and Right subtree count Node
    • Largest Number Smaller in BST
    • Closest Number in Binary Search Tree II
    • Max Path Sum From Leaf To Root
    • Maximum Path Sum Binary Tree I
    • Maximum Path Sum Binary Tree II
    • Maximum Path Sum Binary Tree III
    • Flatten Binary Tree to Linked List
    • Iterative Post-Order Traversal
  • Unsorted Array
    • Find missing number
Powered by GitBook
On this page

Was this helpful?

  1. Binary Search

Search in unknown size array

Given an integer dictionary A of unknown size, where the numbers in the dictionary are sorted in ascending order, determine if a given target integer T is in the dictionary. Return the index of T in A, return -1 if T is not in A.

Assumptions

  • dictionary A is not null

  • dictionary.get(i) will return null(Java)/INT_MIN(C++)/None(Python) if index i is out of bounds

Examples

  • A = {1, 2, 5, 9, ......}, T = 5, return 2

  • A = {1, 2, 5, 9, 12, ......}, T = 7, return -1

Key Insight:

First, identify the frame to search. Then perform the binary search.

public class Solution {
  public int search(Dictionary dict, int target) {
    if (dict == null) return -1;
    if (dict.get(1) == null){
      return dict.get(0) == target ? 0 : -1;
    }
    int left = 0;
    int right = 1;
    //double right until we know target is within range of left->right
    while(dict.get(right) != null && dict.get(right) < target){
      left = right;
      right = 2 * right;
    }
    return binarySearch(dict, target, left, right);
  }

  private int binarySearch(Dictionary dict, int target, int left, int right){
    while(left <= right){
      int mid = left + (right - left) / 2;
      if (dict.get(mid) == null || dict.get(mid) > target){
        right = mid - 1;
      } else if (dict.get(mid) < target){
        left = mid + 1;
      } else {
        return mid;
      }
    }
    return -1;
  }
}

TC: O(log(N))

SC: O(1)

PreviousSmallest Element that is larger than targetNextBasic Operations

Last updated 4 years ago

Was this helpful?