📖
Coding problems
  • Overview
  • Second time
  • Third time
  • 2 sum
    • 2 sum?
    • 2 Sum All Pair I
    • 2 Sum All Pair II
    • 3 Sum
  • Array
    • Smallest and Largest
    • Largest and second largest
    • Longest Palindromic Substring
  • BFS
    • Array Hopper IV
    • Deep copy graph(possible loops)
    • Kth Smallest With Only 3, 5, 7 As Factors
    • Word Ladder
  • Binary Search
    • Closest in Sorted Array
    • Smallest Element that is larger than target
    • Search in unknown size array
  • Bit Operations
    • Basic Operations
    • Power of two?
    • Different bits
    • Reverse all bits of a number
    • Unique String
  • Deque
    • Deque with 3 stacks
    • Largest Rectangle in histogram
  • DFS Permutations
    • All subsets I
    • All subsets size k
    • Combinations For Telephone Pad I
    • Subsets of all permuations
    • Generate N valid parentheses I
    • Generate N valid parentheses II
    • Generate N valid parentheses III
    • Combinations of Coin
    • All Permutation String
    • All Permutations II
    • Telephone Combinations
  • Dynamic Programming
    • Array Hopper I
    • Array Hopper II
    • Array Hopper III
    • Cut Rope
    • Dictionary Word 1
    • Dictionary Word II
    • Eat Pizza
    • Largest Cross of Ones
    • Largest Square Surrounded By One
    • Largest X of 1s
    • Largest Square of Matches
    • Largest Submatrix Sum
    • Longest Ascending Subsequence I & II
    • Longest Common Sequence between two strings
    • Most with positive slope
    • Palindrome Partition
    • Edit Distance
    • Square of ones
    • Wild card matching
    • Wood Cutting
    • 188. Best Time to Buy and Sell Stock IV
  • Graph Search
    • Kth closest to <0, 0, 0>
    • Largest Product of Length
  • HashTable
    • Top K frequent words
    • Bipartite
  • Heap
  • LinkedList
    • Reverse
    • Merge Sort Linked List
    • Re-Order LinkedList
  • Slow fast pointers
    • Remove duplicate elements in array
  • Problem Solving
    • Water Level I
    • Largest rectangle in histogram
    • Range Addition II
  • Recursion
    • ReverseTree
    • NQueen
    • NQueen optimized
    • Spiral Order Print I
    • Spiral Order Print II
    • String Abbreviation Matching
  • Sliding Window
    • Longest subarray contains only 1s
    • Longest Substring Without Repeating Characters
    • Maximum Number within Window
  • Sorts
    • QuickSort
  • String
    • All Anagrams
    • is substring of string
    • Reverse String
    • Reverse Words on sentence
    • Remove Chars from String in place
    • Right shift N characters
    • Remove Leading/duplicate/trailing spaces
    • Shuffle String
    • String Abbreviation Matching
  • Tree Traversal
    • Check balanced tree
    • Check if complete tree
    • Delete in binary tree
    • LCA of two tree nodes
    • Get Keys In Binary Search Tree In Given Range
    • Height of Tree
    • Symmetric Tree?
    • Tweaked Binary tree
    • Set left node count
    • Greatest difference Left and Right subtree count Node
    • Largest Number Smaller in BST
    • Closest Number in Binary Search Tree II
    • Max Path Sum From Leaf To Root
    • Maximum Path Sum Binary Tree I
    • Maximum Path Sum Binary Tree II
    • Maximum Path Sum Binary Tree III
    • Flatten Binary Tree to Linked List
    • Iterative Post-Order Traversal
  • Unsorted Array
    • Find missing number
Powered by GitBook
On this page

Was this helpful?

  1. Dynamic Programming

Largest Submatrix Sum

Given a matrix that contains integers, find the submatrix with the largest sum.

Return the sum of the submatrix.

Assumptions

  • The given matrix is not null and has size of M * N, where M >= 1 and N >= 1

Examples

{ {1, -2, -1, 4},

{1, -1, 1, 1},

{0, -1, -1, 1},

{0, 0, 1, 1} }

the largest submatrix sum is (-1) + 4 + 1 + 1 + (-1) + 1 + 1 + 1 = 7.

Approach: DP

Solution 0:

Check every Top, bottom, left, right O(N^4)

*

Count sum of each box we make O(N^2)

= O(N^6)

Solution 1: Memoize columns to prevent repeated index checks

Save sum of columns going down

ex: for column

orig sum

1 1

2 3

3 6

4 10

Check every top, bottom, left, right O(N^4)

*

Count of sum of summed column across O(N)

Solution 2: Memoize boxes to prevent repeated column checks

Save sum of boxes at its bottom-right position

Generate Memo array of bottom right summing. O(N^2)

+

Check top, bottom, left, right O(N^4)

*

Count sum of each box O(1)

= O(N^4)

Solution 3: Squish column sums into 1D array, Check for largest sum in 1D array

Largest sum of subarray O(N)

orig: 1 2 3 -7 4 5

Memo: 1 3 6 -1 4 9

Take summed columns, squish down

ex:

{ {1, -2, -1, 4},

{1, -1, 1, 1},

{0, -1, -1, 1},

{0, 0, 1, 1} }

Squished down into:

2 -4 0 7

For each ceiling , floor, we squish down O(N^2)

*

Add current layer to squished sum O(N)

+

Find largest sum in squished sums O(N)

= O(N^3)

public class Solution {
  public int largest(int[][] matrix) {
    int N = matrix.length;
    int M = matrix[0].length;
    int result = Integer.MIN_VALUE;
    for(int i = 0; i < N; i++){
      int[] curSquish = new int[M];
      for(int j = i; j < N; j++){
        addRow(matrix, curSquish, j);
        result = Math.max(result, largestSum(curSquish));
      }
    }
    return result;
  }

  private void addRow(int[][]matrix, int[]sum, int row){
    int[] curRow = matrix[row];
    for(int i = 0; i < sum.length; i++){
      sum[i] += curRow[i];
    }
  }

  private int largestSum(int[] input){
    int res = input[0];
    int tmp = input[0];
    for(int i = 1; i < input.length; i++){
      tmp= Math.max(tmp + input[i], input[i]);
      res = Math.max(res, tmp);
    }
    return res;
  }
}

PreviousLargest Square of MatchesNextLongest Ascending Subsequence I & II

Last updated 4 years ago

Was this helpful?