📖
Coding problems
  • Overview
  • Second time
  • Third time
  • 2 sum
    • 2 sum?
    • 2 Sum All Pair I
    • 2 Sum All Pair II
    • 3 Sum
  • Array
    • Smallest and Largest
    • Largest and second largest
    • Longest Palindromic Substring
  • BFS
    • Array Hopper IV
    • Deep copy graph(possible loops)
    • Kth Smallest With Only 3, 5, 7 As Factors
    • Word Ladder
  • Binary Search
    • Closest in Sorted Array
    • Smallest Element that is larger than target
    • Search in unknown size array
  • Bit Operations
    • Basic Operations
    • Power of two?
    • Different bits
    • Reverse all bits of a number
    • Unique String
  • Deque
    • Deque with 3 stacks
    • Largest Rectangle in histogram
  • DFS Permutations
    • All subsets I
    • All subsets size k
    • Combinations For Telephone Pad I
    • Subsets of all permuations
    • Generate N valid parentheses I
    • Generate N valid parentheses II
    • Generate N valid parentheses III
    • Combinations of Coin
    • All Permutation String
    • All Permutations II
    • Telephone Combinations
  • Dynamic Programming
    • Array Hopper I
    • Array Hopper II
    • Array Hopper III
    • Cut Rope
    • Dictionary Word 1
    • Dictionary Word II
    • Eat Pizza
    • Largest Cross of Ones
    • Largest Square Surrounded By One
    • Largest X of 1s
    • Largest Square of Matches
    • Largest Submatrix Sum
    • Longest Ascending Subsequence I & II
    • Longest Common Sequence between two strings
    • Most with positive slope
    • Palindrome Partition
    • Edit Distance
    • Square of ones
    • Wild card matching
    • Wood Cutting
    • 188. Best Time to Buy and Sell Stock IV
  • Graph Search
    • Kth closest to <0, 0, 0>
    • Largest Product of Length
  • HashTable
    • Top K frequent words
    • Bipartite
  • Heap
  • LinkedList
    • Reverse
    • Merge Sort Linked List
    • Re-Order LinkedList
  • Slow fast pointers
    • Remove duplicate elements in array
  • Problem Solving
    • Water Level I
    • Largest rectangle in histogram
    • Range Addition II
  • Recursion
    • ReverseTree
    • NQueen
    • NQueen optimized
    • Spiral Order Print I
    • Spiral Order Print II
    • String Abbreviation Matching
  • Sliding Window
    • Longest subarray contains only 1s
    • Longest Substring Without Repeating Characters
    • Maximum Number within Window
  • Sorts
    • QuickSort
  • String
    • All Anagrams
    • is substring of string
    • Reverse String
    • Reverse Words on sentence
    • Remove Chars from String in place
    • Right shift N characters
    • Remove Leading/duplicate/trailing spaces
    • Shuffle String
    • String Abbreviation Matching
  • Tree Traversal
    • Check balanced tree
    • Check if complete tree
    • Delete in binary tree
    • LCA of two tree nodes
    • Get Keys In Binary Search Tree In Given Range
    • Height of Tree
    • Symmetric Tree?
    • Tweaked Binary tree
    • Set left node count
    • Greatest difference Left and Right subtree count Node
    • Largest Number Smaller in BST
    • Closest Number in Binary Search Tree II
    • Max Path Sum From Leaf To Root
    • Maximum Path Sum Binary Tree I
    • Maximum Path Sum Binary Tree II
    • Maximum Path Sum Binary Tree III
    • Flatten Binary Tree to Linked List
    • Iterative Post-Order Traversal
  • Unsorted Array
    • Find missing number
Powered by GitBook
On this page

Was this helpful?

  1. Unsorted Array

Find missing number

In an Unsorted Array size N - 1 of 1 to N, find the missing number in O(n) time

Solution 1: HashMap

Average case: O(N)

Worst Case: O(N^2)

Solution 2: Boolean Array

input: 7 2 4 1 5 3

boolArr: 1? 2? 3? 4? 5? 6? 7?

Total num = input.length + 1 = 7

Boolean[] boolArr = new Boolean[input + 1];
Arrays.fill(array, Boolean.FALSE);

for (int cur: input){
    boolArr[cur - 1] = true; //int 7 -> boolArr[6] = true
}
for (int i = 0; i < boolArr.length; i++){
    if (boolArr[i] == false) System.out.println(i + 1);
}

Time Comp: O(traverse input + traverse boolArr) = O(2N) = (N)

Solution 3: Subtract

int sum = 0;
for (int i = 1; i <= input.length + 1; i++){
    sum += i;
}

int cursum = 0;
for (int i: input){
    cursum += i
}

return sum - cursum;

Time Comp: O(traverse input + add 1->N) = O(N + N) = O(2N) = O(N)

Solution 4: XOR

  public int missing(int[] array) {

    if (array.length == 0) return 1; 

    //XOR method 
    int x1 = array[0];
    int x2 = 1;
    int n = array.length;

    //XOR input array 1 -> n
    for ( int i = 1; i < n; i++){
      x1 = x1 ^ array[i];
    }

    //XOR ideal array 1 -> n + 1
    for (int i = 2; i <= n + 1; i++){
      x2 = x2 ^ i;
    }

    return (x1 ^ x2);
  }

Time Comp: O(One traversal + N XOR in x2) = O(2N) = O(N)

Space Comp: O(1)

PreviousIterative Post-Order Traversal

Last updated 4 years ago

Was this helpful?