đź“–
Coding problems
  • Overview
  • Second time
  • Third time
  • 2 sum
    • 2 sum?
    • 2 Sum All Pair I
    • 2 Sum All Pair II
    • 3 Sum
  • Array
    • Smallest and Largest
    • Largest and second largest
    • Longest Palindromic Substring
  • BFS
    • Array Hopper IV
    • Deep copy graph(possible loops)
    • Kth Smallest With Only 3, 5, 7 As Factors
    • Word Ladder
  • Binary Search
    • Closest in Sorted Array
    • Smallest Element that is larger than target
    • Search in unknown size array
  • Bit Operations
    • Basic Operations
    • Power of two?
    • Different bits
    • Reverse all bits of a number
    • Unique String
  • Deque
    • Deque with 3 stacks
    • Largest Rectangle in histogram
  • DFS Permutations
    • All subsets I
    • All subsets size k
    • Combinations For Telephone Pad I
    • Subsets of all permuations
    • Generate N valid parentheses I
    • Generate N valid parentheses II
    • Generate N valid parentheses III
    • Combinations of Coin
    • All Permutation String
    • All Permutations II
    • Telephone Combinations
  • Dynamic Programming
    • Array Hopper I
    • Array Hopper II
    • Array Hopper III
    • Cut Rope
    • Dictionary Word 1
    • Dictionary Word II
    • Eat Pizza
    • Largest Cross of Ones
    • Largest Square Surrounded By One
    • Largest X of 1s
    • Largest Square of Matches
    • Largest Submatrix Sum
    • Longest Ascending Subsequence I & II
    • Longest Common Sequence between two strings
    • Most with positive slope
    • Palindrome Partition
    • Edit Distance
    • Square of ones
    • Wild card matching
    • Wood Cutting
    • 188. Best Time to Buy and Sell Stock IV
  • Graph Search
    • Kth closest to <0, 0, 0>
    • Largest Product of Length
  • HashTable
    • Top K frequent words
    • Bipartite
  • Heap
  • LinkedList
    • Reverse
    • Merge Sort Linked List
    • Re-Order LinkedList
  • Slow fast pointers
    • Remove duplicate elements in array
  • Problem Solving
    • Water Level I
    • Largest rectangle in histogram
    • Range Addition II
  • Recursion
    • ReverseTree
    • NQueen
    • NQueen optimized
    • Spiral Order Print I
    • Spiral Order Print II
    • String Abbreviation Matching
  • Sliding Window
    • Longest subarray contains only 1s
    • Longest Substring Without Repeating Characters
    • Maximum Number within Window
  • Sorts
    • QuickSort
  • String
    • All Anagrams
    • is substring of string
    • Reverse String
    • Reverse Words on sentence
    • Remove Chars from String in place
    • Right shift N characters
    • Remove Leading/duplicate/trailing spaces
    • Shuffle String
    • String Abbreviation Matching
  • Tree Traversal
    • Check balanced tree
    • Check if complete tree
    • Delete in binary tree
    • LCA of two tree nodes
    • Get Keys In Binary Search Tree In Given Range
    • Height of Tree
    • Symmetric Tree?
    • Tweaked Binary tree
    • Set left node count
    • Greatest difference Left and Right subtree count Node
    • Largest Number Smaller in BST
    • Closest Number in Binary Search Tree II
    • Max Path Sum From Leaf To Root
    • Maximum Path Sum Binary Tree I
    • Maximum Path Sum Binary Tree II
    • Maximum Path Sum Binary Tree III
    • Flatten Binary Tree to Linked List
    • Iterative Post-Order Traversal
  • Unsorted Array
    • Find missing number
Powered by GitBook
On this page

Was this helpful?

  1. Dynamic Programming

Palindrome Partition

Given a string, a partitioning of the string is a palindrome partitioning if every partition is a palindrome.

For example, “aba |b | bbabb |a| b| aba” is a palindrome partitioning of “ababbbabbababa”.

Determine the fewest cuts needed for palindrome partitioning of a given string.

For example,

minimum 3 cuts are needed for “ababbbabbababa”. The three cuts are “a | babbbab | b | ababa”.

If a string is palindrome, then minimum 0 cuts are needed.

Return the minimum cuts.

Solution: Dp, incremental cuts

Base Case: 0 letters, and 1 letter don't need to be cut

Induction Rule:

  1. Check every increment

  2. Check every cut

  3. if right cut is a palindrome, Check if left cut + 1 is best cut so far

private boolean checkPali(String input, int left, int right){
    if (left >= right) return true;
    while (right > left){
        if (input.charAt(left) != input.charAt(right)){
            return false;
        }
        left++;
        right--;
    }
    return true;
}

public int paliPart(String input){
    if(input == null || input.length() <= 1) return 0;
    int[] M = new int[input.length() + 1];
    M[0] = 0; M[1] = 0;
    for (int i = 2; i <= input.length(); i++){ //check every increment
        int min = Integer.MAX_VALUE;
        for (int j = 0; j < i; j++){ //check every cut
            if (checkPali(input, j, i - 1)){
                min = j == 0 ? 0 : Math.min(min, M[j] + 1);
            }
        }
        M[i] = min == Integer.MAX_VALUE ? -1 : min;
    }
    return M[input.length()];
}
    

Time Complexity: O(N) increment check * O(N) cut check * O(N) checkPali = O(N^3)

Space Complexity: O(N)

0 1 2 3 4 5

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Extra Space Optimization: Memoize palindrome segments

Using O(N^2) space we can track validity of segments.

int[][] paliCheck //is i -> j a palindrome
int[] cuts // min cuts for 0 -> i

Reducing validity check to O(1) means time complexity turns into O(N^2)

PreviousMost with positive slopeNextEdit Distance

Last updated 3 years ago

Was this helpful?