📖
Coding problems
  • Overview
  • Second time
  • Third time
  • 2 sum
    • 2 sum?
    • 2 Sum All Pair I
    • 2 Sum All Pair II
    • 3 Sum
  • Array
    • Smallest and Largest
    • Largest and second largest
    • Longest Palindromic Substring
  • BFS
    • Array Hopper IV
    • Deep copy graph(possible loops)
    • Kth Smallest With Only 3, 5, 7 As Factors
    • Word Ladder
  • Binary Search
    • Closest in Sorted Array
    • Smallest Element that is larger than target
    • Search in unknown size array
  • Bit Operations
    • Basic Operations
    • Power of two?
    • Different bits
    • Reverse all bits of a number
    • Unique String
  • Deque
    • Deque with 3 stacks
    • Largest Rectangle in histogram
  • DFS Permutations
    • All subsets I
    • All subsets size k
    • Combinations For Telephone Pad I
    • Subsets of all permuations
    • Generate N valid parentheses I
    • Generate N valid parentheses II
    • Generate N valid parentheses III
    • Combinations of Coin
    • All Permutation String
    • All Permutations II
    • Telephone Combinations
  • Dynamic Programming
    • Array Hopper I
    • Array Hopper II
    • Array Hopper III
    • Cut Rope
    • Dictionary Word 1
    • Dictionary Word II
    • Eat Pizza
    • Largest Cross of Ones
    • Largest Square Surrounded By One
    • Largest X of 1s
    • Largest Square of Matches
    • Largest Submatrix Sum
    • Longest Ascending Subsequence I & II
    • Longest Common Sequence between two strings
    • Most with positive slope
    • Palindrome Partition
    • Edit Distance
    • Square of ones
    • Wild card matching
    • Wood Cutting
    • 188. Best Time to Buy and Sell Stock IV
  • Graph Search
    • Kth closest to <0, 0, 0>
    • Largest Product of Length
  • HashTable
    • Top K frequent words
    • Bipartite
  • Heap
  • LinkedList
    • Reverse
    • Merge Sort Linked List
    • Re-Order LinkedList
  • Slow fast pointers
    • Remove duplicate elements in array
  • Problem Solving
    • Water Level I
    • Largest rectangle in histogram
    • Range Addition II
  • Recursion
    • ReverseTree
    • NQueen
    • NQueen optimized
    • Spiral Order Print I
    • Spiral Order Print II
    • String Abbreviation Matching
  • Sliding Window
    • Longest subarray contains only 1s
    • Longest Substring Without Repeating Characters
    • Maximum Number within Window
  • Sorts
    • QuickSort
  • String
    • All Anagrams
    • is substring of string
    • Reverse String
    • Reverse Words on sentence
    • Remove Chars from String in place
    • Right shift N characters
    • Remove Leading/duplicate/trailing spaces
    • Shuffle String
    • String Abbreviation Matching
  • Tree Traversal
    • Check balanced tree
    • Check if complete tree
    • Delete in binary tree
    • LCA of two tree nodes
    • Get Keys In Binary Search Tree In Given Range
    • Height of Tree
    • Symmetric Tree?
    • Tweaked Binary tree
    • Set left node count
    • Greatest difference Left and Right subtree count Node
    • Largest Number Smaller in BST
    • Closest Number in Binary Search Tree II
    • Max Path Sum From Leaf To Root
    • Maximum Path Sum Binary Tree I
    • Maximum Path Sum Binary Tree II
    • Maximum Path Sum Binary Tree III
    • Flatten Binary Tree to Linked List
    • Iterative Post-Order Traversal
  • Unsorted Array
    • Find missing number
Powered by GitBook
On this page

Was this helpful?

  1. DFS Permutations

Telephone Combinations

Given a telephone keypad, and an int number, print all words which are possible by pressing these numbers, the output strings should be sorted.

{0 : "", 1 : "", 2 : "abc", 3 : "def", 4 : "ghi", 5 : "jkl", 6 : "mno", 7 : "pqrs", 8 : "tuv", 9 : "wxyz"}

Assumptions:

  • The given number >= 0

Examples:

if input number is 231, possible words which can be formed are:

[ad, ae, af, bd, be, bf, cd, ce, cf]

Solution: DFS of mapped strings

Pre-process number into corresponding String List

DFS:

Each level represent one string, one recursive call for each char of string

Hits bottom when no more string to process. Return current word combo

public class Solution {
  public String[] combinations(int number) {
    //sort number into descending order
    //dfs
    Map<Integer, String> keypad = new HashMap<>();
    keypad.put(2, "abc");
    keypad.put(3, "def");
    keypad.put(4, "ghi");
    keypad.put(5, "jkl");
    keypad.put(6, "mno");
    keypad.put(7, "pqrs");
    keypad.put(8, "tuv");
    keypad.put(9, "wxyz");

    String temp = Integer.toString(number);
    List<String> chars = new ArrayList<>();
    for (int i = 0; i < temp.length(); i++){
      char cur = temp.charAt(i);
      if (cur != '0' && cur != '1'){
        Integer key = cur - '0';
        String value = keypad.get(key);
        chars.add(value);
      }
    }

    StringBuilder sb = new StringBuilder();
    List<String> results = new ArrayList<>();
    helper(chars, 0, sb, results);

    String[] finalResults = new String[results.size()];
    finalResults = results.toArray(finalResults);
    return finalResults;
  }

  private void helper(List<String> chars, int index, StringBuilder sb, List<String> results){
    if (index == chars.size() ) {
      results.add(sb.toString());
      return;
    }

    String cur = chars.get(index);

    for (int i = 0; i < cur.length(); i++){
      //for each letter
      sb.append(cur.charAt(i));
      helper(chars, index + 1, sb, results);
      sb.deleteCharAt(sb.length() - 1);
    }
  }
}

TC:

Integer -> List<String> : number length * O(1) HashMap lookup = O(1)

Helper:N! permutations * N to String = O(N! * N)

SC:

Stack: depth = O( number length )

Heap: result = O(N!)

PreviousAll Permutations IINextArray Hopper I

Last updated 4 years ago

Was this helpful?